Control of a piezoelectrically actuated high-speed serial-kinematic AFM nanopositioner
نویسندگان
چکیده
Controller design to compensate vibration, hysteresis and time delay in a high-speed serial-kinematic X–Y nanopositioner is presented in this paper. A high-speed serial-kinematic X–Y nanopositioner, designed in-house, is installed in a commercial AFM and its scanning performance is studied. The impediments to fast scanning are (i) the presence of mechanical resonances in the nanopositioning stage, (ii) nonlinearities due to the piezoelectric actuators and (iii) time delay introduced by finite clock speeds of the signal conditioning circuitry associated with displacement sensors. In this paper an integral resonant controller is designed to mitigate the effect of the resonance along the X axis (fast axis). The control design accommodates for the time delay, thereby ensuring robust stability. A high gain integral controller is wrapped around the damped nanopositioner to ensure sufficient linearity near the region of operation. For actuation along the Y axis (slow axis), where the bandwidth requirement is less demanding, a notch filter is used to increase the gain margin and the nonlinearity is compensated using a high gain feedback controller. Enhancement in the scanning speed up to 200 Hz is observed. Imaging and tracking performance for open loop and closed loop scans up to 200 Hz line rate is compared and presented. Limitations and future work are discussed.
منابع مشابه
A serial-kinematic nanopositioner for high-speed atomic force microscopy.
A flexure-guided serial-kinematic XYZ nanopositioner for high-speed Atomic Force Microscopy is presented in this paper. Two aspects influencing the performance of serial-kinematic nanopositioners are studied in this work. First, mass reduction by using tapered flexures is proposed to increased the natural frequency of the nanopositioner. 25% increase in the natural frequency is achieved due to ...
متن کاملHigh-speed Serial-kinematic Spm Scanner: Design and Drive Considerations
This paper describes the design of a flexure-guided, two-axis nanopositioner (scanner) driven by piezoelectric stack actuators. The scanner is specifically designed for high-speed scanning probe microscopy (SPM) applications, such as atomic force microscopy (AFM). A high-speed AFM scanner is an essential component for acquiring high-resolution, three-dimensional, time-lapse images of fast proce...
متن کاملModel-Free Adaptive Sensing and Control for a Piezoelectrically Actuated System
Since the piezoelectrically actuated system has nonlinear and time-varying behavior, it is difficult to establish an accurate dynamic model for a model-based sensing and control design. Here, a model-free adaptive sliding controller is proposed to improve the small travel and hysteresis defects of piezoelectrically actuated systems. This sensing and control strategy employs the functional appro...
متن کاملControl of Truss-based Manipulators Using Virtual Serial Models
This paper introduces a novel method for Cartesian trajectory and performance optimization control of kinematically-redundant trussbased manipulators (TBMs), The Virtual Serial Manipulator Approach. The approach is to model complex in-parallel-actuated TBMs as simpler kinematically-equivalent virtual serial manipulators. Standard control methods for kinematically-redundant serial manipulators c...
متن کاملCartesian Parallel Manipulator Modeling, Control and Simulation
Parallel manipulators are robotic devices that differ from the more traditional serial robotic manipulators by their kinematic structure. Parallel manipulators are composed of multiple closed kinematic loops. Typically, these kinematic loops are formed by two or more kinematic chains that connect a moving platform to a base, where one joint in the chain is actuated and the other joints are pass...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014